這個定理有許多證明的方法,其證明的方法可能是數學眾多定理中最多的。路明思(Elisha Scott Loomis)的Pythagorean Proposition一書中總共提到367種證明方式。
有人會嘗試以三角恆等式(例如:正弦和餘弦函數的泰勒級數)來證明勾股定理,但是,因為所有的基本三角恆等式都是建基於勾股定理,所以不能作為勾股定理的證明(參見循環論證)。
趙爽勾股圆方图证明法
编辑
中国三国时期趙爽为证明勾股定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色勾股定理无字证明法。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的趙爽弦图。
趙爽 勾股圆方图证明勾股定理法动画
刘徽“割补术”证明法
编辑
中国魏晋时期数学家刘徽依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图”。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。[8]”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。
刘徽 青朱出入图
利用相似三角形的證法
编辑
相似三角形的證明
有許多勾股定理的證明方式,都是基於相似三角形中兩邊長的比例。
設
A
B
C
{\displaystyle ABC}
為一直角三角形,直角於
∠
C
{\displaystyle \angle C}
(看右圖)。從點
C
{\displaystyle C}
畫上三角形的高,並將此高與
A
B
¯
{\displaystyle {\overline {AB}}}
的交叉點稱之為
H
{\displaystyle H}
。此新
△
A
C
H
{\displaystyle \bigtriangleup ACH}
和原本的
△
A
B
C
{\displaystyle \bigtriangleup ABC}
相似,因為在兩個三角形中都有一個直角(這又是由於「高」的定義),而兩個三角形都有
A
{\displaystyle A}
這個共同角,由此可知第三隻角都是相等的。同樣道理,
△
C
B
H
{\displaystyle \bigtriangleup CBH}
和
△
A
B
C
{\displaystyle \bigtriangleup ABC}
也是相似的。這些相似關係衍生出以下的比率關係:
因為
B
C
¯
=
a
,
A
C
¯
=
b
,
and
A
B
¯
=
c
,
{\displaystyle {\overline {BC}}=a,{\overline {AC}}=b,{\text{ and }}{\overline {AB}}=c,\!}
所以
a
c
=
H
B
¯
a
and
b
c
=
A
H
¯
b
.
{\displaystyle {\frac {a}{c}}={\frac {\overline {HB}}{a}}{\text{ and }}{\frac {b}{c}}={\frac {\overline {AH}}{b}}.\,}
可以寫成
a
2
=
c
×
H
B
¯
and
b
2
=
c
×
A
H
¯
.
{\displaystyle a^{2}=c\times {\overline {HB}}{\text{ and }}b^{2}=c\times {\overline {AH}}.\,}
綜合這兩個方程式,我們得到
a
2
+
b
2
=
c
×
H
B
¯
+
c
×
A
H
¯
=
c
×
(
H
B
¯
+
A
H
¯
)
=
c
2
.
{\displaystyle a^{2}+b^{2}=c\times {\overline {HB}}+c\times {\overline {AH}}=c\times ({\overline {HB}}+{\overline {AH}})=c^{2}.\,\!}
換句話說:
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.\,\!}
歐幾里得的證法
编辑
《幾何原本》中的證明
在歐幾里得的《幾何原本》一書中给出勾股定理的以下証明。設
△
A
B
C
{\displaystyle \bigtriangleup ABC}
為一直角三角形,其中A為直角。從
A
{\displaystyle A}
點劃一直線至對邊,使其垂直於對邊。延长此線把對邊上的正方形一分為二,其面積分別與其餘兩個正方形相等。
在定理的證明中,我們需要如下四個輔助定理:
如果兩個三角形有兩組對應邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS定理)
三角形面積是任一同底同高之平行四邊形面積的一半。
任意一個正方形的面積等於其二邊長的乘積。
任意一個矩形的面積等於其二邊長的乘積(據輔助定理3)。
證明的思路為:把上方的兩個正方形,透過等高同底的三角形,以其面積關係,轉換成下方兩個同等面積的長方形。
证明辅助图2
其證明如下:
設
△
A
B
C
{\displaystyle \triangle ABC}
為一直角三角形,其直角為
∠
C
A
B
{\displaystyle \angle CAB}
。
其邊為
B
C
¯
{\displaystyle {\overline {BC}}}
、
A
B
¯
{\displaystyle {\overline {AB}}}
、和
C
A
¯
{\displaystyle {\overline {CA}}}
,依序繪成四方形
C
B
D
E
{\displaystyle CBDE}
、
B
A
G
F
{\displaystyle BAGF}
和
A
C
I
H
{\displaystyle ACIH}
。
畫出過點
A
{\displaystyle A}
之
B
D
¯
{\displaystyle {\overline {BD}}}
、
C
E
¯
{\displaystyle {\overline {CE}}}
的平行線。此線將分別與
B
C
¯
{\displaystyle {\overline {BC}}}
和
D
E
¯
{\displaystyle {\overline {DE}}}
直角相交於
K
{\displaystyle K}
、
L
{\displaystyle L}
。
分別連接
C
F
¯
{\displaystyle {\overline {CF}}}
、
A
D
¯
{\displaystyle {\overline {AD}}}
,形成兩個三角形
B
C
F
{\displaystyle BCF}
、
B
D
A
{\displaystyle BDA}
。
∠
C
A
B
{\displaystyle \angle CAB}
和
∠
B
A
G
{\displaystyle \angle BAG}
都是直角,因此
C
{\displaystyle C}
、
A
{\displaystyle A}
和
G
{\displaystyle G}
都是共线的,同理可证
B
{\displaystyle B}
、
A
{\displaystyle A}
和
H
{\displaystyle H}
共线。
∠
C
B
D
{\displaystyle \angle CBD}
和
∠
F
B
A
{\displaystyle \angle FBA}
皆為直角,所以
∠
A
B
D
{\displaystyle \angle ABD}
相等於
∠
F
B
C
{\displaystyle \angle FBC}
。
因為
A
B
¯
{\displaystyle {\overline {AB}}}
和
B
D
¯
{\displaystyle {\overline {BD}}}
分別等於
F
B
¯
{\displaystyle {\overline {FB}}}
和
B
C
¯
{\displaystyle {\overline {BC}}}
,所以
△
A
B
D
{\displaystyle \triangle ABD}
必須全等於
△
F
B
C
{\displaystyle \triangle FBC}
。
因為
A
{\displaystyle A}
與
K
{\displaystyle K}
和
L
{\displaystyle L}
在同一直线上,所以四方形
B
D
L
K
{\displaystyle BDLK}
必須二倍面積於
△
A
B
D
{\displaystyle \triangle ABD}
。
因為
C
{\displaystyle C}
、
A
{\displaystyle A}
和
G
{\displaystyle G}
在同一直线上,所以正方形
B
A
G
F
{\displaystyle BAGF}
必須二倍面積於
△
F
B
C
{\displaystyle \triangle FBC}
。
因此四邊形
B
D
L
K
{\displaystyle BDLK}
必須和
B
A
G
F
{\displaystyle BAGF}
有相同的面積=
A
B
¯
2
{\displaystyle {\overline {AB}}^{2}}
。
同理可證,四邊形
C
K
L
E
{\displaystyle CKLE}
必須有相同的面積
A
C
I
H
=
A
C
¯
2
{\displaystyle ACIH={\overline {AC}}^{2}}
。
把這兩個結果相加,
A
B
¯
2
+
A
C
¯
2
=
B
D
¯
×
B
K
¯
+
K
L
¯
×
K
C
¯
{\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}={\overline {BD}}\times {\overline {BK}}+{\overline {KL}}\times {\overline {KC}}}
由於
B
D
¯
=
K
L
¯
{\displaystyle {\overline {BD}}={\overline {KL}}}
,
B
D
¯
×
B
K
¯
+
K
L
¯
×
K
C
¯
=
B
D
¯
(
B
K
¯
+
K
C
¯
)
=
B
D
¯
×
B
C
¯
{\displaystyle {\overline {BD}}\times {\overline {BK}}+{\overline {KL}}\times {\overline {KC}}={\overline {BD}}\left({\overline {BK}}+{\overline {KC}}\right)={\overline {BD}}\times {\overline {BC}}}
由於
C
B
D
E
{\displaystyle CBDE}
是個正方形,因此
A
B
¯
2
+
A
C
¯
2
=
B
C
¯
2
{\displaystyle {\overline {AB}}^{2}+{\overline {AC}}^{2}={\overline {BC}}^{2}}
。
此證明是於歐幾里得《幾何原本》一書第1.47節所提出的[9]
由于这个定理的证明依赖于平行公理,而且从这个定理可以推出平行公理,很多人质疑平行公理是这个定理的必要条件,一直到十九世纪尝试否定第五公理的非欧几何出现。
圖形重新排列證法
编辑
以面積減算法證明
此證明以圖形重新排列證明。兩個大正方形的面積皆為
(
a
+
b
)
2
{\displaystyle (a+b)^{2}}
。把四個相等的三角形移除後,左方餘下面積為
a
2
+
b
2
{\displaystyle a^{2}+b^{2}}
,右方餘下面積為
c
2
{\displaystyle c^{2}}
,兩者相等。證畢。
以重新排列法證明
以動畫方式來論證畢氏定理